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Effects of time-odd electron-phonon coupling in ligand 
field theory 
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Department of Physics, University of Canterbury, Christchurch 1, New Zealand 

Received 20 September 1989 

Abstract. The magnetic effects associated with ligand motion (e.g. a ligand-current-induced 
Zeeman coupling) might be distinguishable in the context of the spectroscopy of condensed 
matter through their time-odd character. In many ligand-field-related situations the time 
reversal signature of all interactions, taken jointly, is of importance in inducing selection 
rules. Time-odd coupling would give rise to novel combinations of temperature, field and 
excited state energy in spin-lattice relaxation times; in Raman phonon spectroscopy it would 
generate distinctive chiral phenomena; as noted by Fletcher it would give breakdown of 
Jahn-Teller reduction factor sum rules; it would also give rise to complex values of the Berry 
phase factor in Jahn-Teller systems. Similar characteristic evidences for time-odd coupling 
effects may be expected for lanthanide 4f+ 4f transition intensities and in virtual phonon 
exchange. 

1. Introduction 

1 .I. Historical context 

In pioneering work by Van Vleck in the 1930s, the splitting of free-ion electronic states 
by ligands was described in terms of ligand fields, notably the action of the electrostatic 
field from the ligand charges in splitting and mixing the electronic states of the ion. Fuller 
details including personal perspectives are given by Gorter and van Duyneveldt 1974, 
Judd 1988, and Newman and Ng 1989. With adaptation as described below for the 
inclusion of specifically quantum effects on electronic energies, this model has been 
enormously successful in a wide variety of systems. 

The Van Vleck model has a natural extension to a quasistatic theory of ion-lattice 
coupling, in which electric (and therefore time-even) field effects are assumed to be 
dominant. In the early days of electron paramagnetic resonance, this mechanism quickly 
established its superiority and relevance over the direct spin-spin coupling originally 
considered by Waller (1932) (the latter being a time-odd mechanism), as the principal 
mechanism for spin-lattice relaxation of paramagnetic ions in crystals. Solid state 
workers therefore have since then tended to ignore the possibility of time-odd coupling 
of paramagnetic ions to the ligand field. Of the major reviews of spin-lattice relaxation 
since the 1960s, Gill (1975) mentions time-odd coupling: ‘it is accepted that the effect 
on the paramagnetic ion of the electromagnetic fields which are associated with the 
vibrations of the lattice is quite negligible,’ and Stevens (1967) similarly states ‘We ignore 
this direct spin-lattice interaction assuming it is small.’ Apart from the very early 
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discussion relating to Waller’s specific mechanism, we have been unable to trace any 
analysis in the literature which attempts to justify this assumption, or any reference to 
the matter in the more recent reviews (Orbach and Stapleton 1972, Shrivastava 1983 for 
example). Fletcher (1981) and Fletcher and Pooler (1982) are unique in having raised 
the matter seriously. The matter has not been debated keenly partly since precise 
confirmation of the Van Vleck model is not easy; Stevens (1967) says: ‘the fact that it 
has taken something like 25 years to be quite sure’ (of the Van Vleck mechanism) ‘is 
both a remarkable tribute to Professor Van Vleck’s insight and an illustration of the 
difficulties in obtaining reliable data.’ In this paper we suggest that even after a further 
20 years the significance of time-odd coupling for dynamic effects is still an open and 
interesting question. 

The potential of the dynamic effects of the ligand field for giving information about 
the underlying physical mechanisms has been widely recognised. The dependence of the 
observed ion-lattice relaxation time on temperature, field, concentration and energy 
splitting often identifies the type of mechanism in considerable detail. More fun- 
damentally, it was realised several decades ago that purely electrostatic calculations of 
the ligand field are quite inadequate far the lanthanides, and sophisticated models (such 
as molecular orbital theoretic models) have been developed for the static field analysis, 
so refining the Van Vleck model (Newman 1971). Corresponding modifications were 
made to the theory of the dynamic ligand field (see for example Stedman and Newman 
1971); however such models of the dynamic ligand field invariably regard this as a quasi- 
static extension of the static ligand field. 

1.2. Rekindled interest 

Recently some traditional assumptions of lattice dynamics have been reexamined. The 
role of rotational modes of the lattice in such topics as relaxation has long been unclear, 
and sometimes vigorously debated (e.g. Wurgers 1989), in the literature. Many authors 
(e.g. Judd 1974) dismiss the rotational modes as irrelevant. While their coupling is 
forbidden within the Born-Oppenheimer approximation, this cannot be invoked in the 
context of a nonadiabatic process such as spin-lattice relaxation. Hence the symmetry 
preservation under rotation in an adiabatic limit cannot be invoked (as by Galeeva et a1 
(1980)) as a criticism of early papers on rotational mode effects in spin-lattice relaxation. 
Nor are Galeeva et a1 (1980) correct to argue that nonadiabaticity in spin-lattice relax- 
ation is confined to Kramers doublets, as is shown by our calculations for non-Kramers 
systems (§ 2). 

It has long been realised, at least by some workers, that rotational modes contribute 
to elastic constants; Nelson (1988) has recently reopened the question of the supposed 
irrelevance of the rotational modes in lattice dynamics (see also Pleiner and Brand 1988). 
The possibility of rotational mode coupling in spin-lattice relaxation was mooted two 
decades ago (Kumar et a1 1970, Melcher 1972, Abragam etal 1972). Galeeva etal (1980) 
indeed argue that since local rotational modes are likely to be more strongly excited than 
(for example) shear modes, and since the obvious selection rules may be overcome by 
looking at higher-order coupling efects, rotational mode coupling could dominate in 
spin-lattice relaxation. However the possibility that rotational mode coupling could be 
effective at lower order in perturbation if the coupling mechanism were time-odd has 
not been discussed previously. 
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1.3. Earlier literature on rotational couplings 

The situation is complicated by some confusion in these works with regard to selection 
rules both for rotational modes and for time-odd coupling. The best justification for the 
omission of rotational modes in spin-lattice relaxation is that implicit in the discussion 
of Kumar et a1 (1970), and is based on a time-reversal argument. It assumes that only a 
time-even coupling mechanism operates. 

It also assumes that in all point groups, rotational modes transform in a manner 
which is inconsistent with time-even coupling; this is worthy of some justification. There 
are obvious cases when rotational coupling is forbidden on either coupling, for example 
E doublets in octahedral symmetry; in such cases, the Barnett effect, or magnetisation 
by rotation in paramagnets (Fletcher and Pooler 1982), is likely to be much reduced 
(Fletcher 1981). Otherwise the time-odd character of rotational couplings is guaranteed 
for the following reasons. Its coupling must be time odd at the O(3) level, since the 
appropriate rotational irrep 1+ is never in the symmetric part of the square of any O(3) 
irrep such as the vector irrep 1'. This is preserved in branching through a subgroup chain 
since symmetric and antisymmetric parts of a Kronecker product do not mix under 
branching provided no multiplicities arise. Multiplicities would arise only for a relatively 
low symmetry point group, where any degeneracy may be assigned to partners within 
l'(O(3)) for the purposes of a point group Kronecker product analysis. And multi- 
plicities in the branching rules for l'(O(3)) always can be removed by introducing an 
intermediate group. Hence in particular there is no scope for enhancing the Barnett 
effect by considering unusual symmetries. 

Abragam et a1 (1972) comment that Melcher (1970) does not take into account 
correctly the rotational properties of the fictitious spin. However they in turn substitute 
a time-odd operator (angular momentum) for the electronic operator expressing the 
rotational mode coupling, on the basis that the angular momentum operator correctly 
duplicates its rotational properties. Nevertheless they explicitly describe the mechanism 
as the standard quasistatic electric ligand field model and so as time-even, substituting 
the corresponding coefficients into their formalism. In this way they are led to predict 
a sizeable effect from rotational couplings. Their argument is spurious since their 
formulation is inconsistent; the contribution they discuss is disallowed by the selection 
rules imposed by time reversal symmetry. This problem was concealed from view by the 
inappropriate operator substitution mentioned above. 

1.4. Observability 

We frankly concede that the quasi-static approach to the dynamic ligand field has as 
much validity as (say) the superposition model of the ligand field, and that the time-odd 
coupling between the ion and the lattice mode is much smaller than the time-even 
coupling. In this paper we emphasise that this must be weighed against the possibility 
that time-odd coupling effects, by breaking the selection rules under which time-even 
effects are constrained, could nevertheless contribute significantly to physical effects. 
We also pose, and to some extent answer, the interesting question as to whether the 
associated effects are so characteristic as to aid in their unambiguous identification. The 
handicaps of the conventional mechanisms of spin-lattice relaxation caused by various 
selection rules arising from time inversion considerations are already well known; 
similarly for other applications of ion-lattice coupling theory. In this paper we aim to 
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include time-odd coupling among the possible strategies for overcoming these handi- 
caps. 

1.5. The tasks for further analysis 

In a general approach, we see four obvious tasks. First, ab  initio estimates should be 
made of the magnitude of all likely contributions to the time-odd coupling (‘how big is 
it likely to be?’). Second, the various mechanisms should be categorised with respect to 
their other symmetry properties and so their relevance to different physical situations 
(‘do different time-odd coupling mechanisms have different symmetries?’). Third, the 
reported relevance of experimental data such as the Barnett effect should be correlated 
with the ab  initio estimates (‘do these estimates fit the data?’). Fourth, the special 
circumstances in which even a small time-odd component to the coupling might be 
detectable should be estimated (‘how might it be recognised?’). This paper attempts the 
fourth of these tasks. We first comment briefly on the first two tasks. 

1.6. Magnitude estimates 

The comments of Gill )1975) and Stevens (1969) about the smallness of time-odd 
coupling reflect the early death of the Waller mechanism, and probably also the fact that 
back-of-the-envelope calculations of the Zeeman effect from a moving ligand, regarded 
as a point charge, indeed suggest a very small contribution relative to that from the 
change in the static field. There are four main reasons why this is not necessarily the 
death of our subject. 

First, the matter seems not to have been seriously examined; as far as we know, no 
calculation of the Zeeman effect from a moving ligand has been reported in the literature. 
As a crude attempt to remedy this deficiency, we might guess an amplitude of vibration 
of x - 0.5 nm, an angular frequency w - lo2 THz, giving a magnetic field T near 
the lanthanide, so giving an energy shift of the standard mechanism. 

Second, Fletcher (1981) and Fletcher and Pooler (1982) establish a direct connection 
between this mechanism and the Barnett effect of magnetisation by rotation, which has 
been observed in a wide variety of systems (Bates 1961). 

Third, it is unlikely that the obvious mechanism for such a calculation (the semi- 
classical Zeeman effect from a point ligand as estimated above) is dominant. Before 
rejecting the possible relevance of time-odd coupling one might first be expected to 
formulate the theory of a Dirac electron in a molecule with internal motion (say in a 
rotating frame). We may expect, in view of the plethora of relativistic terms which 
appear in the static solution of the Hamiltonian of a hydrogen atom, that such a 
calculation would throw up many dynamic terms of time-odd character, most of which 
would have no classical counterpart, and some of which would be at least comparable 
to the classical terms. In view of the increasing sophistication of relativistic effects in 
quantum chemistry, the time is ripe for such a calculation. 

Fourth, back-of-the-envelope calculations of any mechanism can prove totally inad- 
equate. For example, the static ligand field is known to be poorly predided, and for 
lanthanides (higher rank parameters in particular) underestimated on a point charge 
model by up to two orders of magnitude. While overlap integrals between the open shell 
electrons of a lanthanide ion and its ligands are small (a few percent), their contribution 
to the ligand field dominates for the higher rank ligand field parameters (Newman 1971). 
Incidentally, these are the parameters which are most important for the dynamic ligand 

cm-’, or 
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Figure 1. Analysis of the apparent angular dependence of the ligand field in the superposition 
model. The lower diagrams represent tesseral harmonics (m  = 0 ,1 ,2 ,3 )  for the cor- 
responding 4f orbitals. Their electrostatic interaction energies with a point ligand are very 
similar; however, only the first and second (m  = 0, 1) overlap with ligand functions (s, po; 
pn respectively). 

field, since their dependence on the interionic separation is stronger. Intrinsically small 
contributions in ligand field theory can be amplified by quantum effects to dominate the 
situation. 

We parenthetically explain this result in simple terms, partly because this has not 
been previously done in the literature (though the fact has been well known for decades), 
and partly because this explanation may prove to have a new relevance in the present 
context. Thanks to the superposition model (Newman 1971, Newman and Ng 1989) it is 
sufficient to consider an axial arrangement of ligand and lanthanide ion (figure 1); a 
non-axial configuration may be reduced to an axial configuration using angular system- 
atics. The energy of electrostatic interaction between a ligand and a lanthanide orbital 
(incidentally including corrections for the distribution of the charge) is relatively large; 
yet the overlap terms dominate the ligand field splitting. This is because the lanthanide 
orbital feels the ligand field through the differences in energy of the various orbitals (m = 
0,1,2,3) (figure 1). These energy differences are relatively small for the electrostatic 
integrals; they are also fairly uniform across the orbital set. By contrast, an m = 0 orbital 
will overlap only with an s or po ligand orbital, while an m = 1 orbital will overlap only 
with a ligand prr orbital. Hence the overlap-related contributions to the lanthanide 
energy splittings, which have roughly the ratio of the squared magnitudes of the overlap 
integrals, are strongly dependent on the orbital: all the overlap contribution appears as 
a difference. As a consequence the lanthanide 4f electron, acting as a probe of the 
anisotropy of the ligand field by way of the measurement of the energy differences 
between orbitals, senses a very strong angular variation in the overlap-dependent con- 
tribution to the effective ligand field. This is the physical reason that the high-rank 
parameters are particularly dependent on overlap-related effects. 

A 'quantum enhancement' of the time-odd coupling in equally possible. The sen- 
sitivity of an overlap integral to motion is completely omitted in a classical calculation, 
even if (which we question) the semiclassical Zeeman-based mechanism is the dominant 
one. 

1.7. Classification of mechanisms 

In the wide variety of potential mechanisms, as in the fully relativistic analysis suggested 
above, there will certainly be a diversity of behaviour with respect to such symmetries 
as particle-hole (PH) conjugation. It is often a special signature or combination of 
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symmetries of an interaction which lead to vital selection rules, and the PH conjugation 
character is especially relevant to half-filled shells. Whether or not a time-odd phonon 
interaction will break the symmetries satisfied by a more conventional interaction may 
depend on its PH conjugation character. Ceulemans (1984) proved that linear Jahn- 
Teller effects vanish in half-filled shells (including those of ligand field theory, e.g. d2 in 
octahedral symmetry); it would take a time-odd phonon interaction with the same PH 
conjugation character as the time-even mechanism to couple in first order, much as the 
relevance of higher multipole terms than El in the spectroscopy of half-filled shells may 
be traced to their PH conjugation character (Stedman 1987). 

1.8. Summary of approach 

We discuss several physical problems whose solution depends on the time reversal 
symmetry of the assumed interaction between a paramagnetic ion and the lattice 
vibrations. In most of these cases, but not all, the conventional theory tacitly assumes a 
time-even coupling. We ask: for what kind of measurement, and at what kind of 
level, might an additional contribution from a time-odd coupling be significant? Where 
possible, we consider a particular observable, and compare the strengths of the time- 
odd contribution to it and that of any competing contribution from a conventional 
mechanism, defining the ratio of these terms as afeasibility quotient FQ. For different 
applications we find that the FQ value may involve the ratio of time-odd and time-even 
coupling amplitudes, or the square modulus of this ratio, and other factors such as 
energy ratios associated with the perturbation theoretic denominators arising in either 
mechanism. The comparison of feasibility quotients for the possible applications gives 
significant information about the observability of time-odd coupling. Only a brief review 
of the conventional mechanisms, omitting proofs, is given here. 

1.9. Time reversal selection rule 

The central theorem to all our applications is the selection rule 

pr E [A@AI?  as z,,z~ = 21 (1) 

Mlr ,  = (z I Oh 1 AI’) ( 2 )  

if the matrix elements 

of an operator Oh in a basis { I  AI)} are not all to vanish. Here we denote by an overbar 
the time-inverted ket or bra: 13) TI@), where T is the time inversion operator. The 
paired labels refer to representation (A, p) and component (1, m) with respect to some 
symmetry group G, and the symbol €3 to the Kronecker product of representation 
theory; r labels possible repetitions of p in the Kronecker product. z,, is the phase of the 
basis under double time inversion (i.e. (-l)n where n is the number of electrons), to is 
the time reversal signature of the operator. The proof of this rule (for various full 
expositions of which, see Abragam and Bleaney 1970, Stedman - - -  and Butler 1983, Sted- 
man 1990) is based on noting that since T is antilinear, ( @  IO 1 q) = (@ IO 1 q)*, and that 
therefore Mn,, is symmetric or antisymmetric in the labels I, I‘ depending on the joint 
signature zAz0 of the state and operator under T. It is assumed that the basis is time even, 
in that 1111) is expressible as a linear combination of the {IN’)}; this may necessitate A 
being a reducible representation under G, hence the use of a capital Greek letter. In our 
applications, we should enlarge the basis to be a product { I  Al) 1 L)}  of kets from the 
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electronic space and of kets 1 L )  from the nonelectronic space (photons or phonons or 
both) coupled by the interaction. 

We shall require an extension of this result, which is proved in a parallel way. 
Consider the case where OL + 0 (the lack of suffices denoting the fact that the following 
expression has not yet been written as a sum of irreducible tensors) is an effective 
operator derived from perturbation theory and bilinear in two interactions A", BP: 

{ 1520)) is a basis for another (or possibly the same) electronic level, also assumed to be 
a time-even basis. 1 L )  symbolises the altered state of any non-electronic system, for 
example photons or phonons. The application will be to processes in which the energy 
change in going from I L )  to I L' )  in the nonelectronic system will balance the energy 
change in the overall electronic transition. 

We have distinguished the labels L", L"' in the two terms of equation ( 3 )  to make the 
point that if we are considering some process in which, say, A" creates a quantum 
(photon or phonon) and Bp does something different (annihilation, as in a Raman 
process, or perhaps a purely electronic coupling), the states 1 L") and 1 L"') necessarily 
involve different quanta and have different energies. We allude to this circumstance for 

As in the Foof  of equation 1, on using the basic rules ( a  1 VI b)  = (a i  VI b)* = 
(b  1 V i  1 a) = t v ( b  1 VI;) it is readily seen that M!?, can be related to t A t g t A M P l m  to the 
extent that the energy denominators in the two terms of equation (3) are equivalent. 
Hence equations (1) and (2) apply approximately only, with to  

It is shown by later examples that this means that the conventional time-even 
mechanism for many physical processes is subject to a full cancellation (in equation (2)) 
or a near cancellation (in equation ( 3 ) )  through time reversal considerations, in the 
latter case a full cancellation being averted only through the inequivalence of the 
denominators of equation ( 3 ) .  The time-even process is therefore intrinsically handi- 
capped by the ratio of the difference in the denominators to their average.The time-odd 
coupling, though intrinsically much weaker, does not have this handicap, and so could 
become significant. 

Even so, the (presumably) small matrix elements relevant to time-odd coupling may 
make the resulting effects weaker than those for time-even coupling. The corresponding 
process will be identifiable experimentally only through some novel property associated 
with the novel time reversal character. We will want to find cases for which these novel 
features are maximised, and at the same time for which the amplitude loss sustained by 
choosing time-odd coupling is minimised. Both of these considerations make inter- 
ference terms (in the square modulus of a sum over all possible transition amplitudes, 
which characterises all quantum probabilities) of special interest; we shall introduce the 
time-odd interaction in just one matrix element. If the feasibility quotients depend 
explicitly or implicitly on an adjustable parameter (temperature or field), the region 
in which interference effects are significant will be transitional, and we may expect 
experiment to show the effects of time-odd matrix elements in all amplitudes for appro- 
priate choices of parameters. In that case the feasibility quotient of interest will be a 
second or fourth power of the feasibility quotients that we list later. 

brevity as the case of non-equivalent denominators. _ _ _  

tAtB. 
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For further reference, we note that if V,  denotes a time-gveEelectronic operator and 
I $  the time inverse of I a ) ,  the basic rule (a  I VI b) = (5 1 V? I a ) ,  V i  = z v V  gives 

- 
(a  I v, I a> = GI ve I a) ( a i V e I a )  = Oif z, = -1. (4a)  

Many but not all of the interesting applications in this work pertain to Kramers (odd- 
electron) systems, for which rA = - 1 and incidentally I AI is even; even-electron or non- 
Kramers systems have T,, = + 1. 

2. Spin-lattice relaxation in Kramers systems 

For material reviewed briefly below, the reader should consult, for example, Orbach 
and Stapleton (1972), Shrivastava (1983). In EPR experiments on Kramers systems, the 
relaxation of interest occurs between two states in the set { 1 AI)} which corresponds to 
some level and which are degenerate in the absence of the magnetic field. For simplicity 
we consider a doublet ground state la) - I1,1), 1 a) - 12, -1). 

First we consider the dependence of the time-odd coupling matrix element on phonon 
frequency. This suggests a direct experimental test for time-odd coupling, and is also 
highly important in determining the temperature dependence of a spin-lattice relaxation 
process. Whatever the detailed mechanism may be, the ligand operator will be derived 
from a velocity rather than a position operator in the time-odd case, and so will contain 
one more power of phonon frequency. 

Searches have been made for frequency dependence of the spin-lattice coupling 
constants G,, for S-state ions or of the effects of stress on spectral splittings (e.g. Black 
1971, Clare and Devine 1980); comparisons can be complicated by other effects (Weber 
and Luchner 1981), such as phonon-phonon interaction, bottlenecking or cross-relax- 
ation. No evidence for a frequency dependence characteristic of any time-odd mech- 
anism has been reported to our knowledge; it is perhaps noteworthy, and at least 
indicative of the kind of reevaluation of experimental data which we would like to see, 
that a discrepancy between EPR splittings and so spin Hamiltonian parameters for 
Gd3+: LaES at differing frequencies reported by Bleaney et a1 (1951) has still not been 
resolved. Such investigations set at least an upper limit for time-odd coupling effects 
which merits detailed comparison with the lower limit associated with the Barnett effect; 
we do not attempt this here. 

The temperature and magnetic field dependence of ion-lattice relaxation is often 
characteristic of the mechanism: whether via long- or short-wavelength phonons, 
whether field-assisted, or involving admixtures of excited states etc. We show that 
characteristic changes can be expected for time-odd coupling. The prediction of the 
temperature dependence demands a knowledge of the dependence of the matrix element 
of the fundamental interaction V o n  the phonon frequency w ,  since the connection with 
temperature arises through an integral over frequency with a given density of states 
(usually a Debye density) together with a phonon population factor involving the ratio 
of frequency and temperature. 

vu; we might expect 
V K  U in that any relative motion or strain from acoustic phonons must be linear 
in wavevector and hence frequency; the compensating factor l/vw arises from the 
normalisation of the Fourier expansion of the strain operator in terms of normal mode 
amplitudes. Different frequency and so temperature dependences are observed for 
optical or short-wavelength phonons (Shrivastava 1983). 

For time-even coupling to long-wavelength phonons, V 
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For time-odd coupling, the differential momentum of lanthanide and ligand intro- 
duces a k- and therefore U-factor for acoustic phonons as for the time-even case; second, 
the extra factor w from the velocity as opposed to position dependence; third, that the 
remainingnormalisation factor is l / d w  as for the time-even case. (The second and third 
contingency just mentioned may be verified by comparing the frequency dependence of 
the position and momentum operator for a simple harmonic oscillator.) This means that 
whenever a time-odd interaction matrix element replaces a time-even interaction, at 
least one extra factor of frequency and so of temperature is automatically acquired. 

Many other phenomena (e.g. cross relaxation and phonon bottlenecks) can also give 
rise to increased temperature dependences. In a site with inversion symmetry, the linear 
terms in wavevector are inadequate to couple the odd modes of vibration, which may 
nevertheless be argued to couple significantly at higher order in wavevector and with a 
correspondingly enhanced temperature dependence (Klimachev 1973). Another ques- 
tionable assumption is that in discussing these frequency factors we always assume a 
Debye density of states with an associated factor w 2 .  The temperature dependence of 
ion-lattice relaxation is therefore sensitive to the dimensionality of the system, an 
observation which has lead to an ingenious if difficult test for the presence of lower 
dimensional and even fractal geometry (Stapleton et al1982, Shrivastava 1982, Liu 1985; 
note however that this lowers the temperature dependence). The observed temperature 
dependence 1-90 therefore already been used as an indicator for the process, the geometry 
of the lattice, the phonon wavevector dependence, and indeed the impurity concen- 
tration. In proposing yet another mechanism for increasing the temperature dependence 
we propose at most a careful reevaluation of the literature in the light of a previously 
ignored alternative explanation. 

2.1. Direct process 

Consider first a single-phonon or direct process relaxation mechanism. The electronic 
operator corresponding to the phonon interaction plays the role of Og.  This immediately 
gives the selection rule that the mediating phonons are restricted to representations ,U 

compatible with equation 1. Inspection of the Kronecker product rules for both true and 
spin point group representations A shows that in most groups it is rotational modes, 
and those with similar transformation properties, which can never mediate relaxation 
processes, in the conventional choice zo = + 1 ,  i.e. a time-even phonon coupling mech- 
anism. The reason for the special character of rotational modes in this context is discussed 
in section 1.3. 

The spin-lattice relaxation contribution to the longitudinal relaxation time z necess- 
arily involves a population change and so coupling between the time-conjugate states of 
the Kramers ground doublet, i.e. the matrix elements MI,  and so only the symmetric part 
of the Kronecker product of equation (1). Hence (either from equation ( 1 )  or equation 
(4)) the direct process of spin-lattice relaxation is strictly forbidden for the case of time- 
even phonon coupling in Kramers systems. 

The conventional approach at this point is to include the effects of admixtures of 
higher electronic states (at a relative energy A )  by the magnetic field B associated with 
the EPR experiment. This gives rise at moderate temperatures to a direct relaxation 
process with the field and temperature dependence B 4 T / A 2 ;  one factor w and hence B 
(from w = g p B / h )  comes from the square of the matrix element, a factor w 2  from 
the phonon density of states, a factor (B/A)’ from the admixtures necessary in each 
amplitude and a factor (2n + 1)  (so generating T / B  at high temperatures) from the 
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relative population factors arising in the rate equation, where n is the Bose-Einstein 
function for the phonons. Experiments have confirmed this temperature dependence 
and to some extent the field and energy dependence, in various systems. If the effect of 
admixtures within the ground doublet only is considered, we have A - B so that there 
is a B2T dependence. 

A time-odd coupling escapes this cancellation and so provides an interesting alterna- 
tive origin for a direct relaxation process; rotational modes for example could couple 
time-conjugate states directly. The above calculation of the T ,  B and A dependence is 
them simply modified by the addition of another T factor, and the removal of a B / A  
factor, for every replacement of a time-even by a time-odd interaction. This yields a 
process depending as B 3 T 2 / A  (for an interference term) or B2T3 (for a fully time-odd 
coupling), rather than B 4 T / A 2 ,  for example. One possibility therefore is to search for 
contributions to spin-lattice relaxation times with this revised temperature and field 
dependence. A test of the A dependence is difficult but not inconceivable (Krygin et a1 
1986). 

The feasibility quotient in this situation may be taken as 

FQ1 = I V0IV.z I (A/gBB> 

where V,, V,  represent a typical matrix element of the time-odd/even kteraction and 
gPB is the Zeeman splitting. There is an implicit temperature dependence in this and 
similar following expressions through the different frequency dependence of V ,  and V,. 

The B4T dependence of the direct process is confirmed in many systems (Pashinin 
and Prokhorov 1963, Davids and Wagner 1964 for example). A dependence has 
indeed been reported in some systems, and is often taken to indicate the presence of a 
phonon bottleneck. Our analysis gives one alternative to a bottleneck interpretation, 
and particularly if the exponent rises above 2 .  Whether this mechanism should then be 
taken seriously becomes a matter for further theoretical and experimental investigation. 

2.2. Dephasing time 

A second relaxation time may be measured in such experiments as linewidth studies: 
the transverse relaxation time z2, corresponding to the dephasing of the spin through 
lattice interaction. Since it depends on the diagonal matrix elements of the ion-lattice 
interaction within the ground doublet, which are non-zero for time-even coupling, it 
might be expected that the conventional mechanism suffers no handicap in this case. 
However, quantum interference effects (see for example Stedman 1970a) require a 
coherent composition, in fact a subtraction, of the relevant matrix elements for the two 
states in the doublet. Since a time-even interaction mechanism equates these matrix 
elements (just as these states are degenerate in a time-even static ligand field) this 
process also cancels to first order. 

Again a time-odd coupling thereby becomes a competitor; its diagonal matrix 
elements are opposite in sign (just as a magnetic field splits the doublet), and their 
subtraction gives a finite result. As before, the characteristic signature of time-odd 
phonon coupling will be a contribution to the direct relaxation process with a stronger 
temperature dependence and a weaker field dependence; a similar feasibility quotient 
can be expected for the transverse as for the longitudinal relaxation time. 
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2.3. Raman process 

If two phonon interactions are involved, we are not restricted to the coupling of time 
conjugate states in each phonon interaction. We consider operators of the form of 
equation 3 where Am and BP are both one-phonon couplings. Let Amdescribe the creation 
of a phonon in mode k ,  and BP the annihilation of a phonon in mode 1; IL"), 1L''') 
represent states with one more, or one less, phonon respectively, and the corresponding 
denominators contain nuk, -fro,. 

As shown in 0 1, the matrix elements arising in a second order calculation will satisfy 
a symmetry or antisymmetry restriction which is exact to the extent that the denominators 
in equation (3) are equivalent. 

First we consider the case that R # A, i.e. that the intermediate electronic state is 
an excited ligand field level. It is then a reasonable approximation to set the denominators 
equal to the energy difference A = E, - En; phonon energies are ignored. In equation 
3, this yields equivalent denominators. As a consequence, Raman contributions to the 
longitudinal relaxation time in Kramers doublets are approximately forbidden for time- 
even phonon coupling. In the present context this phenomenon is well known and is 
called the Van Vleck cancellation (Orbach and Stapleton 1972). The amplitude for the 
conventional process of relaxation is therefore handicapped by the ratio of the sums of 
the phonon energies to a typical electronic energy difference. The reciprocal of this ratio 
contributes to a feasibility quotient for the visibility of an interference term involving a 
time-odd interaction given by: 

When the average over the phonon spectrum is taken, the extra factors of phonon 
frequency induce a new and characteristic temperature dependence. In general if, after 
all near cancellations are accounted for, the amplitude of any Raman relaxation process 
is of degree p in phonon frequencies, the corresponding observable varies at T7+2P. 
Instead of giving a T7 process, as found for non-Kramers systems, the Van Vleck 
cancellation leads to a T9 dependence, which is clearly distinguishable in experiment. 
Alternatively, magnetic field modification of the wavefunctions of the ground doublet 
permit a process with a T7B2 dependence. This is weaker by the ratio (gpB/fiw)2, where 
w is a typical phonon frequency. Such dependences are clearly verified experimentally 
(Orbach and Stapleton 1972, Pouw and van Duynevelkt 1976, Shrivastava 1983). 

The question as to whether there is a clear experimental signature for the presence 
of a time-odd coupling takes a new and interesting form. In a non-Kramers ion, the 
effect of time-odd coupling is to convert a T7 process to a T8-T" process depending on 
how many of the four time-even matrix elements are replaced by time-odd matrix 
elements, simply because of the different frequency dependence of these matrix 
elements. In a Kramers ion, the problem is more subtle; the replacement of one matrix 
element avoids the Van Vleck cancellation with the associated power of w ,  but rein- 
troduces the same factor w through its different frequency dependence. If no more than 
one matrix element in each amplitude is replaced, then, the temperature dependence is 
unchanged. If both are replaced, a Van Vleck cancellation reappears. Temperature 
dependences of T" have been seen, and variously explained (Klimachev 1985 for 
example considers time-even coupling to an odd mode in second order of the wave- 
vector). As for the direct process of relaxation, this discussion may be extended 
to the transverse relaxation time with similar conclusions. 
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The feasibility quotient now depends critically on the nature of the competing 
mechanism. For non-Kramers ions, the latter is the standard T7 process, and the feasi- 
bility quotient is 

F Q 3  = 1 v,/v, I 
distinguishable if at all through the implied difference in temperature dependence. For 
Kramers ions, the feasibility quotient vis-a-vis the standard T9  process is FQ?, the 
feasibility quotient vis-a-vis the B2T7 process is F Q 1 ,  and that vis-a-vis the T" coupling 
to phonons in second order of wavevector k is 

F Q 4  = I V o P e  I ( l / W  
where a is the ion-ligand separation. 

2 .4 .  Semidiagonal Raman process 

In semidiagonal relaxation (Walker 1968, Stedman 1969), the intermediate electronic 
states are those of the ground doublet: SZ = A. Here we clearly cannot have equivalent 
denominators in equation (3); rather, the denominators are nearly opposite, since 
iio %gpB and energy conservation requires the phonons to have approximately equal 
energies. (For non-Kramers ions, this gives a T 5  dependence.) Nevertheless, time 
inversion selection rules still handicap the contributions of the time-even interaction for 
two reasons, both of which derive from equation (4). 

The first reason (I) is that a time-even interaction may not couple a state within the 
ground doublet with its time inversion conjugate in the absence of field-induced mixing 
from higher levels (which destroys the conjugacy). The second (11) is that the equality 
of the diagonal matrix elementsfor a state and for its conjugate within the gound doublet 
generates a new form of Van Vleck cancellation which is exact in the limit that the 
phonon energies are the same, i.e. that the ground state Zeeman splitting is negligible. 
Time inversion selection rules thus conspire to limit maximally the effectiveness of 
the conventional time-even coupling mechanism both for longitudinal and transverse 
relaxation (Stedman 1970b). The effect is to reduce the semidiagonal amplitude in 
Kramers systems by a factor (gpB)2/(Aiiw), thus giving a T3B4/A2 process. In this 
expression, the factor gpB/ho  is associated with I, and the factor gpB/A with 11. 

This double cancellation gives a special interest to the possible role of a time-odd 
coupling in such a system. The reciprocals of the above factors for mechanisms I and I1 
contribute to the feasibility quotient appropriate for estimating the significance of time- 
odd coupling in this problem. Hence the feasibility quotient F Q ~  is to be associated with 
the bypassing of I through introduction of a time-odd phonon coupling between the 
time-conjugate states of the ground doublet. If the time-odd interaction is used to 
differentiate the diagonal matrix elements (bypassing 11) and/or to give a finite off- 
diagonal matrix element (bypassing I) we obtain the respective feasibility quotients 

F Q 3  = I vo/v, I fi@/gpB 

and F Q ~ .  To remove either source of handicap we need a time-odd interaction in one 
amplitude; to remove both we need two such. The feasibility quotients are different, 
and are multiplied when both replacements are made. 

These time-odd coupling effects are distinguishable through their unique com- 
bination of temperature and field dependence; F Q ~  introduces two powers of temperature 
per amplitude, so returning a T7 semidiagonal process in Kramers systems. Since 
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relevant phonon energies are typically less than electronic ligand field splittings, we 
have the hierarchy AE > h a  > gPB, so that F Q ~  - FQ3 S FQ2. The role of the time-odd 
coupling mechanism in semidiagonal relaxation could therefore be of special import- 
ance. 

3. Phonon Raman spectroscopy 

We extend the formulation of phonon Raman scattering (for example Churcher and 
Stedman 1981) to include time-odd phonon coupling. By this is meant a Raman effect 
with photons of polarisation e, e‘ in which the electronic system eventually returns to 
the original level, while a phonon in mode K k  is emitted with an energy hwk equal to the 
difference fi(w - w ’ )  of the photon energies. For convenience we write labels in vector 
form: 51 = (0, U ’ ,  U,), s2 = (w ’ ,  0, - w k ) , s  = ( I ,  I ’ ,  k ) , i =  (I’, E, k ) .  

Three interactions are involved, and equation (3) needs to be generalised accord- 
ingly. The Raman spectral feature has an intensity 

where the relevant matrix elements MV’(51)  are related as in section 1 to an effective 
operator of the form 

x (L’f’I(NvIVkIL’)/(EA - EM + hw)(EA - EN - hw’)] . . .}. 
The omitted terms correspond to five alternative orderings of the three operators: the 
electric dipole operator components DP, DP’ and the ion-lattice interaction V,, with 
corresponding changes to the denominators. The analysis of section 1, extended to this 
matrix element, leads to the symmetry 

Mgy’(G) = T A T v M I , ,  P’P (51). - 

In the equivalent denominator approximation, which in this context means that the 
replacement 51’ + G has a negligible effect on the denominators, we obtain the selection 
rules 

where p is the coupling symmetry of the photon interactions, K the symmetry of the 
phonon and v a coupling symmetry for phonon and photons. This generalises the 
selection rules of Churcher and Stedman (1981) to time-odd (tV = - 1) as well as time- 
even coupling. 

As an example, we give in table 1 Raman active phonon modes for either coupling 
and for the true irreps of the tetrahedra group T. It is clear from an inspection of this 
table that some phonon symmetries are Raman active for time even coupling only, some 
for time-odd coupling only, some for both, and some for neither. Symmetric phonons 
( K  = 0) are never Raman active for time-odd coupling within states of a true irrep; the 
symmetric or identity irrep satisfies xo(g2)  = x0(g)*  = 1 and so is never present in the 
antisymmetric square of a true irrep. 
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Table 1. Raman active phonons for the tetrahedral group. 

Time-even coupling: - 
!J 0 2 1 1  

Time-odd coupling: - 
!J 0 2 1 1  

A K A K 

0 0 \ 0 1 \ 

1 \ 2 \ \  

\ \ \  1 \ \ \  1, i 1 

0 \ 2 1 \ \  

L L  2 2 0 L 

1 \ 1 L 

2 \ \  0 \ 

1 \ \  

0 L 

2 \ 1, i 1 \ \ \ \  

?.,i \ \ \ \ 0 \ \  

On the face of it, breakthrough (Raman activation) of previously forbidden phonons 
would be a clear denomination of time-odd coupling. As such it competes against other 
sources of breakthrough, including instrumental problems (such as Snell’s law effects 
at boundaries: Lai et a1 1987) and the breakdown of the assumption of equivalent 
denominators. This assumption requires the difference of the photon energies h o ,  no’, 
which by energy conservation is itself the phonon energy, to be negligible. Since these 
are optical photons, this is likely to be an excellent assumption for non-resonant Raman 
scattering processes in comparison with ion-lattice relaxation. We may therefore expect 
a feasibility quotient of the form: 

as compared to breakthrough from a breakdown of the assumption of equivalent denomi- 
nators, if the time-odd coupling acts in just one amplitude. This looks promising, given 
that the frequency ratio in F Q ~  is -103-104 in standard applications. 

The best hope for detection of time-odd coupling through Raman scattering may still 
rest with those phonon symmetries which are Raman active for both couplings though 
in different polarisations, since as in our discussion of spin-lattice relaxation interference 
between time-odd coupling in one amplitude and time-even coupling in the conjugate 
amplitude makes the feasibility quotient linear rather than quadratic in the (presumably 
small) ratio I Vo/Vel. 

4. Jahn-Teller reduction factors 

Fletcher (1981) has already pointed out the significance of time-odd lattice coupling for 
sum rules between Ham reduction factors K(A). The latter express the extent to which 
matrix elements of any electronic operator of given point group symmetry A are reduced 
by lattice interaction with Jahn-Teller active lattice modes. These modes in turn are 
those non-symmetric modes that couple to an electronic manifold characterised by a 
definite point group irrep A. As such, Jahn-Teller active modes are precisely those 
consistent with equation 2 and with time-even coupling. Raman active modes also 
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include the symmetric modes. We note that Ceulemans (1984) showed that in half-filled 
shells the Jahn-Teller coupling vanishes to first order for reasons to do with its joint 
particle-hole conjugation and time reversal character; as mentioned in section 1, the 
situation for general time-odd coupling mechanisms in this rule deserves fuller study. 

Sum rules between reduction factors, limiting their relative magnitudes, hold in 
special circumstances-second order coupling only, or coupling isoenergetic lattice 
modes. In each of these circumstances it is possible to use the point group 6j symbol 
orthogonality relations to transform between reduction factors and the reduced matrix 
elements of the lattice mode interaction as essentially dual parametrisation schemes 
(Payne et a1 1983). Since time reversal considerations limit the possible symmetry types 
of the participating phonons (the other reduced matrix elements vanishing), they also 
interrelate the dual parameters, the reduction factors. Payne et a1 (1983) discuss this in 
T x z etc. 

Time-odd interactions permit new mode symmetries to be Jahn-Teller active. Hence 
the sum rules are violated at lower order of perturbation than might otherwise be 
expected. Fletcher (1981) has illustrated this in the E x E system (doublets in cubic 
symmetry). As a related and a particularly simple example, consider the planar square 
system of Stedman (1983) with SO(2) as well as D4 symmetry. In second quantisation 
the Hamiltonian is 

H =  E ( f : f l  + f J f 2 )  + hw,(a+a + ii) + hwb(b:b* + b:62 + 1) 

U' creates a phonon in the Az mode of the molecule, b:,  b: create phonons in the B, and 
B2 modes respectively, and fi,f: create electrons in the two E states (px, p,). The 
corresponding coupling constants and energies are labelled in an obvious fashion, and 
the eigenkets of the Hamiltonian by Ii nanln2), the labels giving the state of the electron 
and the populations of the AZ, B and B2 modes in the corresponding unperturbed state 
( i  n,nln2)o. It is a simple exercise in first order perturbation theory to derive 

K(A2) = (lOOOi(f~f2 -fJfl)I2000) = 1 - 4 V ; / ~ i .  

The time-odd coupling V, clearly has the effect of violating the sum rule 2K(B1) = 

This violation competes with the other sources of violation implied by the above 
discussion: a spectrum of lattice mode frequencies, contributions fourth order in ion- 
lattice coupling, etc. Since real molecules and solids almost invariably have a broad 
vibration spectrum, testing the validity of sum rules between reduction factors is not a 
good way of looking for the effects of time-odd coupling. 

1 + K(A2).  

5. Complex geometric phase factor in Jahn-Teller systems 

When the ligand states are altered over a closed path in some parameter space of the 
Hamiltonian, the associated electronic wavefunctions do not necessarily return with 
their original phase. The non-dynamical part of the phase change, or Berry phase, is 
topological in character, since it does not depend on the manner in which the system is 
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taken along the closed path in parameter space. Chancey and O'Brien (1988) have shown 
that a Berry phase of n (a sign change of the electronic wavefunction) is appropriate to 
the E x E Jahn-Teller system under an SO(2) rotation of 2n  on the ligand states; see 
also O'Brien (1989). This sign reversal is clear in the explicit perspex-and-string model 
of Stedman (1983) for the SO(2) + D4 molecule discussed in section 5:  since the ligand 
arrows rotate at twice the angular speed of the electronic state (there is a 2: 1 reduction 
on one pulley system), the central p electronic state rotates only by 7~ for a 2n  ligand 
rotation, and (since it is a p electron) changes its sign. However, this discussion as well 
as that of Chancey and O'Brien (1988) ignores the effect of time-odd or A2 mode 
coupling. In another context Kivelson and Rokhsar (1988) explicitly argue that the 7~ 
phase change is the only possibility when the Hamiltonian is time-even. 

In general, we may rewrite the electronic part of equation (4) in terms of spin 
operators (s = 1) for the fermion doublet: H = EZ + Vb(a,Q1 + axe2) + V,o,P, where 
Qi = ( b i  + b i ) ,  P, = i(a - a'). Under a coordinate transformation 

this becomes H = EZ + B U where B = (VbQo, VbQe, -V,P,) is an effective operator 
magnetic field for the spin. 

Berry (1984) treated this problem in the adiabatic limit. If we first assume V,  is zero, 
B is in thexy plane. The cone drawn by the spin in its space during an adiabatic evolution 
is a plane, and subtends a solid angle 2n;  hence the Berry phase y, which is half this solid 
angle, is n. When we allow time-odd coupling, the cone subtends a smaller solid angle, 
and the geometric phase factor exp(iy) is complex in general. 

We may solve the time dependent Schrodinger equation exactly for the case B = 
(Bb cos wt, Bb sin u t ,  Bo). The arbitrary initial state 

evolves into 

i p exp(-iwt) 

4 
Y(t) = exp(-iEt/fi + iwt/2)[cos(6t/h) ( 

where 6 = d [ B i  + ( B ,  - lfio)2]. Physically Bb 9 B, and in the adiabatic limit B, 9 f iw. 
H(t) has the instantaneous eigenvalues A' = E 2 E ,  where E ( B i  + Bi)lI2 with cor- 
responding (unnormalised) eigenstates q' = ([ t E + B,] exp(-iwt)/Bb, l)T so that if 
q ( 0 )  is the normalised eigenstate qq'(0) of H(O), it is easily shown that v(t) is given by 

v( t )  = qexp( - iEt/fi + iwt/2){ [ cos( &/ti)) T isin( 6t/h)( 1 - h2 w 2  B;/4d2 E ~ )  l i 2 ] q  ' ( t )  

- i(fiw/26) sin(bt/fi)(l t B , / E ) ~ '  (r)}. 

For cyclic adiabatic evolution t = 2n/w so that H(t)  = H(0).  Keeping only terms of zero 
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order in hu/Bb we obtain v(2n/u)  = - exp(-2ni(E f G)/ho)q(O). The dynamical 
phase is given by 

- j--2n'u (W)/W)I1Ct(t))  d d h  = - (2n?G/W(E * 8) 

giving a Berry phase /? = w ( n  -+ Ba/&) ,  in agreement with p = -+ 52/2 (Berry 1984), 
where R is the solid angle subtended by B in parameter space. 

This verifies that the geometric phase factor exp(ip) is complex if the time-odd 
phonon coupling Bo is finite. This, like the sign of the Berry phase (Jiao eta1 1989), will 
certainly be of experimental importance. We may expect these consequences to be 
distinguishable from the effects (such as coupling to modes of very different frequencies) 
whose action rivalled the other manifestations of time odd coupling in Jahn-Teller 
systems (section 4). 

6. Other consequences of time-odd coupling 

6.1.  Ligand field induced absorption 

The Judd-Ofelt theory expresses the oscillator strengths of f "  + f "  transitions, when 
associated with electric dipole radiation interaction together with an odd parity ligand 
field interaction (the latter to satisfy the parity selection rule), as a sum over k of terms 
proportional to the reduced matrix elements of effective operators Aqk whose rank k is 
even and not greater than six (as for ligand field interaction within the f" configuration). 
This parametrisation has been successful also when the ligand field interaction is necess- 
arily dynamic (for lanthanide ions at a site with inversion symmetry) as well as static. 
The oscillator strengths are averaged over polarisation, and the denominators associated 
with the intermediate state energies are assumed to be rotational scalars, i.e. ligand field 
splittings of the virtual states are ignored. 

The analysis of section 2 implies that a time-odd dynamnic ligand field would require 
the presence of odd-rank (even parity) operators in the Judd-Ofelt formalism. The 
matrix elements relevant to the oscillator strength may be written in an f"LSJMJ basis: 
f I(JMJIAklJM;)(*, and Mj plays the role of 1 in equation (2); there are no further 
energy denominators to be approximated. In fact, the requirement of even rank is strictly 
a consequence of time reversal, rather than parity, considerations. Of course it would 
be impossible to detect the presence of a time-odd dynamic coupling in practice by such 
a reparametrisation. 

However, the situation is more hopeful if the polarisation is not averaged. Newman, 
Richardson, Reid and coworkers have discussed the extra information that may be 
obtained about the dynamic and the static contributions of the ligand field to oscillator 
strengths, using a tensorial expansion scheme with more parameters but also with much 
more predictive power. This is of special interest since we may expect a time-odd 
coupling to mimic the action of an internal magnetic field as far as selection rules are 
concerned, so inducing such chiral effects as optical activity which are not included in 
an analysis which averages over polarisation (see Berry et a f  1986a, b, Richardson et a1 
1986). 

Optical activity induced by a time-odd ligand interaction in systems with inversion 
symmetry will have as its competitor the mechanism for natural optical activity. i.e. 
interference between electric and magnetic dipole coupling terms; the relevant selection 
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rules for chiral interactions such as (natural or induced) optical activity (Ross et a1 1988) 
are equally satisfied by a change in time reversal phase or the incorporation of one more 
power of the photon wavevector in one interaction term. At this level of argument 
the feasibility quotient for the observability of the time-odd dynamic coupling effects 
becomes 

FQ5 E I vo/ve I(E1)/(M1) 

where the last terms denote the relative size of electric and magnetic dipole matrix 
elements. This estimate does not however make allowance for other possible methods 
of identification, which we do not study here: as well as inducing a chiral effect, the time- 
odd ligand coupling may be associated with a characteristic set of the tensorial operators, 
much as Berry et al ( 1986a, b) and Richardson et a1 (1986) have discussed those features 
peculiar to M1 transition moments and ligand field effects in conjunction with f" spectra. 

6.2.  Virtual phonon exchange 

McKenzie and Stedman (1979) show that complicated Van Vleck cancellations occur in 
the analysis of virtual phonon exchange. Clearly these may be avoided as in section 2 by 
introducing interference with time-odd coupling terms. These will have the effect of 
changing the temperature and excited state energy dependence of the mechanism in a 
similar manner to that for the Raman spin-lattice relaxation processes. 

6.3. S-state ion spectra 

The selection rules special to half-filled shells, both of atomic and of molecular orbitals, 
limit the effects from time-even operators such as Jahn-Teller coupling (Ceulemans 
1984). Clearly there may be breakthrough from time-odd coupling mechanisms whose 
other symmetries are appropriate. 
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